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Abstract. The influence of a soliton on the properties of the Mössbauer effect resulting from the gamma-
active nuclei situated at lattice sites in quasi-one-dimensional anharmonically organic molecular chains,
in which the active nuclei emit gamma-photons, has been theoretically studied by a quantum vibrational
model. An expression for the gamma-radiated Mössbauer transition probability as a function of the temper-
ature and non-linear interaction has been obtained. Finally we give some new properties of this effect from
numerical calculation in such a case, which present a way to experimentally confirm the soliton existence
in molecular crystals.

PACS. 76.80.+y Mössbauer effect; other γ-ray spectroscopy – 33.40.+f Multiple resonances (including
double and higher-order resonance processes, such as double nuclear magnetic resonance, electron double
resonance, and microwave optical double resonance) – 71.38.+i Polarons and electron-phonon interactions

1 Introduction

In the last thirty years it has been discovered that the
non-linearity in the forces and soliton motion occurring in
physical systems play a decisive role in the explanation of
a large variety of phenomena. It was first of all found that
the lattice was bound only by linear forces, i.e., harmonic
potentials which would have an infinite heat conductiv-
ity, and that only the introduction of non-linearity leads
to finite vales of this quantity [1]. Perhaps the most in-
teresting feature of non-linear dynamics is the existence
of soliton solutions which have been observed in a lot
of materials with non-dispersive and non-linear interac-
tions, for example, water, ferro- and antiferro-magnets,
optical fibre, and so on. Recently, there has been inter-
est in the non-linear properties of the organic molecu-
lar crystals, for example, acetanilide (CH3COHNC6H5)x
or ACN [1–21]. In the acetanilide two close chains of
hydrogen-bonded amide-I groups run through the crys-
tal. The space group is D15

2h(Pbca) and the unit cell
of factor group is D2h for this kind of crystal. There
are eight molecules in an unit cell and at the amide-
I frequency each of these has one degree of freedom;
there thus are three infrared-active modes (B1u, B2u, and
B3u), four Raman-active modes (Ag, B1g, B2g, and B3g),

a e-mail: pangxf@mail.sc.cninfo.net

and one inactive mode (Au). However, at low frequency
(< 200 cm−1), each molecule exhibits six degrees of free-
dom (three of translation and three of rotation), thus there
are a total of 48 low-frequency modes (24 Raman active
modes (6Ag+6B1g+6B2g+6B3g), 18 infrared-active modes
(6B1u+6B2u+6B3u) and six (Au) modes corresponding to
the acoustic modes of translation and rotation). All of
these active modes are seen in infrared absorption and
Raman experiments [1–5]. The ACN is an interesting sys-
tem because the nearly-planar amide-I group display bond
distances which are close to those found in polypeptides.
Since the physical properties of such a hydrogen bonded
amide-I system are very sensitive to bond distances, the
study of ACN reveals some new phenomena [1–5]. For ex-
ample, in the experiments of infrared absorption and Ra-
man scattering, when the crystalline acetanilide is cooled
below room temperature from 320 to 10 K, a new amide-I
band red-shifted from the main peak, 1666 cm−1, by about
16 cm−1. No other major changes occur from 4000 cm−1

to 800 cm−1. The intensity of this new band steadily in-
creases from room temperature to 70 K. The band at
1650 cm−1 is not present in amorphous materials or ACN
methylated at the position where the hydrogen-bonded
distances occur, but after annealing it is fully recovered.
Raman spectra of ACN show also the same results men-
tioned above [1–3].
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We knew that a characteristic feature of the amide-I
group CONH in polypeptides is the amide-I mode, mainly
involving C=O stretching. This mode is observed as an in-
frared absorption peak of about 1666 cm−1 in ACN and
near that value in a wide variety of materials including
the amide-I groups. The corresponding spectroscopic evi-
dence of the new band have been presented, and detailed
measurements of the crystal structure and specific heat
as a function of temperature [1–3] preclude an assignment
of the new band to (1) a conventional amide-I mode, (2)
crystal defect states, (3) Fermi resonance or (4) frozen ki-
netics between two different subsystems. A correct idea is
the assignment to a self-trapping of amide-I vibrational
energy [1–5] on the basis of the following experimental
facts: (1) 15N substitution which induces a small shift on
the amide-I at 1666 cm−1 also shifts the new band by the
same amount; (2) deuterium substitution at the NH posi-
tion strongly affects both the amide-I and the new band
in a complicated way; (3) upon cooling a parallel decrease
of the normal amide-I integrated absorption and increase
of the 1650 cm−1 band integrated absorption is observed;
(4) the 1650 cm−1 band and the amide-I band show the
same dichroism over the temperature range integrated; (5)
the measurements of specific heat, the dielectric constant
and the volume expansion as a function of temperature,
rule out the occurrence of rotational isomerism or of a
polymorphic transition which would affect some other in-
frared and Raman absorption bands, but not affect the
new band. The self-trapping mechanism of amide-I vibra-
tional energy proposed by Scott, Eilbeck et al. [1–5] comes
from the Davydov model of vibrational energy transport
in alpha-helix protein [9]. They have given a good ac-
count of the properties of first excited state in this model.
Scott et al. [4] and Alexander et al. [6] have also obtained
the exponential dependence of the absorption intensity on
the temperature, exp(−βT 2), and explain the changes of
intensity of the new band with decreasing temperature
observed in the experiments [1–6] in terms of a comple-
mentary polaron or soliton pictures of the self-trapping
state on the basis of the Davydov model. However, the
red-shifted value obtained from these models is too small,
only a few cm−1 as compared with the experimental value
of 16 cm−1. This shows these models need improving.

We here think, also, that the new band of amide-
I is brought about by the self-trapping of amide-I vi-
brational quanta [12–18] which is different from the
Davydov’s exciton-soliton model or Alexander’s comple-
mentary polaron picture. We think that the cooperative
interaction between the localized amide-I vibrations and
low frequency lattice vibrations results in the occurrence
of the vibron-soliton, i.e., thought such an intrinsically
non-linear interaction between them, an amide-I vibra-
tional quantum as a source of the low-frequency phonons
causes shifts in the average positions of the ground state
of the low-frequency vibrations of the lattice. These shifts
(the lattice distortions) in turn react, through this non-
linear interaction, as a potential well to trap the amide-I
vibrational quantum and prevent dispersion of the energy
of the amide-I vibrational quantum via the dipole-dipole

interaction which exists in the neighbouring peptides with
certainly electric moments. Thus the vibron-soliton oc-
curs. It is a dynamic self-sustaining entity. The main prop-
erty of the soliton is it can move over macroscopic dis-
tances retaining the wave shape, energy, momentum and
other quasi-particles with velocity v. Using this model we
have given the red-shift value and other results which are
basically consistent with the experimental data [19–21].

There is only the subsonic solitons (V < V0, V0 is speed
of the sound waves of molecular chains) in the system if
we take into account only the linear harmonic vibration
of the molecular chains [13–19]. However, in the case of
the molecular chain, which is in contact with a thermal
reservoir at a temperature of T 6= 0 K, where the lat-
tice has anharmonic vibrations, a supersonic motion of
the soliton appears in the systems [10,16,21]. The super-
sonic soliton formed can move together with the localized
chain deformation along the molecular chains. In molecu-
lar crystals where the above mentioned supersonic soliton
exists at T 6= 0 K, the states of atoms in the molecu-
lar chains will be changed due to the interaction between
the soliton and the atoms [13,21]. Furthermore, the nu-
clei situated at crystal sites will also be excited or acti-
vated. Thus, gamma-quantum emission of the active nuclei
probably appears. This effect will result in an observable
Mössbauer effect. In fact, when an active nucleus emits
a gamma-ray, the transition energy, ∆Enm, in principle,
may be distributed between the gamma-photon and the
nucleus that emitted the photon, the chain as a whole,
and finally between the vibrations of the chains (in the
case of our discussion, instead of pure phonon vibrations,
the localized self-trapped solitonic state occurs due to the
exciton-phonon interaction). The energy needed for a nu-
cleus to leave its site in the chain is at least 10 eV, but
the recoil energy does not exceed several tenths of an elec-
tronvolt. As a result, an atom whose nucleus has emitted
a gamma-ray cannot change its position in the lattice.
The recoil energy which a molecular chain can receive as
a whole is small (N � 1), so that it may be neglected.
Thus the transition energy can be distributed only be-
tween the gamma-quantum and the solitons. A Mössbauer
transition occurs if the solitonic state of the chain is not
changed, and the gamma-photon receives the entire en-
ergy of the transition. The purpose of this paper is to
study the properties of the Mössbauer effect resulting from
this mechanism and to calculate corresponding gamma-
radiative Mössbauer transition probabilities by means of
the vibrational quantum (vibron) model, i.e., we here pro-
posed a new experimental confirmation of the existence of
solitons in molecular crystals, which is helpful to under-
standing the nature of the solitons occurring in the sys-
tems and facilitates the development of soliton physics.
The plan of this paper is the following. In Section 2 we
derive the equations of motion from the given Hamiltonian
and wave function [12–21] and give the soliton solutions of
these equations in the anharmonically organic molecular
crystals at finite temperature T 6= 0 K. In Section 3 the
gamma-radiative Mössbauer transition probabilities have
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been obtained and some properties of this effect are also
discussed.

2 The soliton excitations in the anharmonical
crystals at T 6= 0 K

Due to the fact that we here consider the molecular crys-
tals to be at a finite temperature, which are in contact
with a thermal reservoir at temperature of T 6= 0 K, there
are anharmonic vibrations of the molecular chains in the
systems when compared with the case where we do not
take into account the temperature effect [16,21]. There-
fore, the Hamiltonian describing the collective excitation
state resulting from the structural deformation and lo-
calized fluctuation in such a case should be represented
as [12–21]

H = Hex +Hph +Hint (1)

Hex =
1

2m

∑
i

p2
i +

1

2
mω2

0

∑
i

r2
i

−
1

2
mω2

1

∑
i

riri+1 (1a)

Hph =
1

2
M
∑
i

Ṙ2
i +

∑
i

V (Ri −Ri−1) (1b)

Hint =
1

2
mχ1

∑
i

(Ri+1 −Ri−1)r2
i

+mχ2

∑
i

(Ri+1 −Ri)riri+1. (1c)

This Hamiltonian represents the properties of the in-
tramolecular excitation caused by the localized fluctuation
and the features of sound vibration of the molecular chain
arising from the structural deformation and the interac-
tion between the two modes of motion, respectively. Here
m and M are the masses of the vibrational quanta (vi-
bron or exciton) generated by the intramolecular excita-
tion and of a molecule in an unit cell, respectively. ω0 and
ω1 are the diagonal and non-diagonal elements of dynamic
matrix, the ω0 is also the Einstein resonant frequency of

the amide-I (C=O stretching) oscillator. 2χ1 =
∂ω2

0

∂Ri
and

2χ2 =
∂ω2

1

∂Ri
are the changes of the vibrational energy of the

molecular lattice and of the coupling interaction between
neighbouring vibrons by unit extension of the chain. ri and
pi = mṙi are the normal coordinate of the oscillator
and its canonical conjugate momentum, respectively. Ri
and Pi = MṘi are the canonically conjugate operators
of displacement and momentum of the molecule, respec-
tively. V (Ri−Ri−1) is the non-linear interaction potential
due to the temperature T 6= 0 K, which is usually repre-
sented by the Toda lattice potential [21]

V (R) =
α′

β
(e−βR − 1) + α′R

≈
1

2!
α′βR2 −

α′β2

3!
R3 + · · · (2)

where λ = α′β and λ1 = α′β2

2 are the elastic and non-
elastic constants of the molecular chain, respectively.

Due to the fact that the intramolecular excitation and
the vibration of the molecular chain are all quantized then
ri, pi, Ri and Pi should be represented by corresponding
creation and annihilation operators. Thus we here adopt
the standard canonical quantized transformations

ri = (2mω0/~)−1/2(b+i + bi),

pi = (
1

2
~mω0)1/2(−j)(bi − b

+
i ) (j =

√
−1) (3)

Ri =
∑
q

(~/2MNωq)
1/2(aq + a+

−q)e
jir0q;

Pi = j
∑
q

(M~ωq/2N)1/2(a+
−q − aq)e

jir0q (4)

where ωq = 2(λ/M)1/2 sin(r0q/2) is the frequency of
phonon with wave vector, q. N is the number of sites
in the molecular lattice, r0 is the distance between the
molecules, b+i (bi) and a+

q (aq) are the creation (annihi-
lation) operators of vibron (exciton) and phonon, respec-
tively. Thus, when V (R) is chosen as a cubic anharmonic-
ity, equation (1) becomes

H =
∑
i

ε0(b+i bi +
1

2
)−

~ω2
1

4ω0

∑
i

(b+i bi+1 + bib
+
i+1)

+ ~
∑
q

ωq(a
+
q aq +

1

2
)−

∑
i,q1,q2

F (q1, q2)(aq1 + a+
−q1)

× (aq2 + a−q2)(a(q1+q2) + a+
−(q1+q2))

+
∑
i,q

[g(q)(b+i bi + bib
+
i )

+ g1(q)(b+i bi+1 + bib
+
i+1)](aq + a+

−q)e
jir0q

(5)

where

F (q1, q2) =
8

3
jλ1(

~
2M

)1/2(ωq1ωq2ω(q1+q2))
−1/2

× sin(
1

2
r0q1) sin(

1

2
r0q2) sin(

1

2
r0(q1 + q2));

g(q) = (
~

2MNωq
)1/2(

~χ1

4ω0
)(ejr0q − e−jr0q);

g1(q) = (
~

2MNωq
)1/2(

~χ2

2ω0
)(ejr0q − 1); ε0 = ~ω0.

(6)

Due to the fact that the molecular crystal we here study
is a closed system which does not exchange particles with
the environment, we could ignore these terms including
bnbm and b+n b

+
m (m = n, n+ 1) because if these terms are

retained in the above the Hamiltonian then shows that
the number of particles of the system is not conserved
which is not appropriate for the system. Therefore we have
omitted the above terms in equation (5) when inserting
equations (3, 4) in equation (1).

As far as the wave function of the system is concerned,
owing to the fact that the non-linear interaction arising
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from the vibrational quantum (vibron)-phonon interac-
tion can result in not only the coherent excitation of the
phonons but also the coherent excitation of the vibrons,
namely when the phononic wave function is represented by
a coherent state, the vibronic wave function should also
be represented by a coherent or quasi-coherent state, in-
stead of a excitation state of a single-particle. After noting
this fact and taking into account the thermal distribution
of the phonons due to the finite temperature T 6= 0 K,
thus the wave function describing the states of collective
excitations occurring in the organic molecular crystals at
a finite temperature should be represented as [12–21]

|Φν〉 = |ϕ〉|aν〉 (7)

where

|ϕ〉 =
1

λ′

(
1 +

∑
i

ϕi(t)b
+
i

)
|0〉ex

≥
1

λ′
exp

[∑
i

ϕi(t)bi

]
|0〉ex (7a)

(we take the normalized factor λ′ = 1 in the following
calculation for convenience) and

|αν〉 = U+
i |ν〉

= exp

{∑
q

[αq,i(t)a
+
q − α

∗
q,i(t)aq]

}
|ν〉 (7b)

while

|ν〉 =
∏
q

(ν′q!)
−1/2(a+

q )ν
′
q |0〉ph (7c)

is the phononic complete set which represents the elemen-
tary excitation state of the single phonon due to the finite
temperature T 6= 0 K. |0〉exp and |0〉ph are the vacuum
states of the vibron and phonon, respectively. We here
should point out that equation (7a) is not a standard co-
herent state and excitation state of single particles, but
a coherent superposition of the ground state and one vi-
bronic state, i.e., it is a quasi-coherent state. The reason
we adopt it is that the number of particles contained in
that state should be determinate (it, in fact, contains only
one quantum, i.e., N = 〈ϕ|(

∑
i b

+
i bi)|ϕ〉 =

∑
i |ϕi(t)|

2 =
1), but a standard coherent state contains innumerable
particles which can not maintain the conservation of par-
ticles in the system, equation (1) or equation (5). This
is not appropriate for the molecular crystal of closed sys-
tems. Moreover, owing to the fact that we have already
considered the mutual influence between the vibrons and
the phonons in this wave function, equation (7) as men-
tioned above, it again is not necessary to construct the lin-
ear correlated wave function of the vibron (exciton) and
phonon as the |D1〉 state for the Davydov model in the
protein molecules [9].

By utilizing the above Hamiltonian, equations (5–7),
we can directly derive the equations of motion from the

expectation values of the vibron and phonon operators
in the state in equation (7): ϕn(t) = 〈Φ(t)|bn|Φ(t)〉 and
αq(t) = 〈Φ(t)|aq |Φ(t)〉. As a matter of fact, taking again
the time derivative of the above variables and assuming
that |Φ(t)〉 satisfies a nonstationary Schrödinger equation,
i.e., j~ ∂∂t |Φ(t)〉 = H|Φ(t)〉, we can thus obtain the required
evolution equations

j~
∂

∂t
ϕn(t) = 〈Φν |[bi,H]Φν〉

j~
∂

∂t
αq(t) = 〈Φν |[aq,H]Φν〉. (8)

These are just the equations of motion for the vibron
(exciton) and phonon, respectively. However, because the
molecular crystals we study here are in contact with a
thermal reservoir at finite temperature of T 6= 0 K, after
finishing this calculation of the expectation value in quan-
tum mechanics from equation (8), we should calculate the
thermal mean value by means of the following formulae:

Y = 〈Y 〉 = Tr((ρνν)phY (t))

=
∑
ν

[〈ν|ρ|ν〉ph〈Φν |Y (t)|Φν〉]. (9)

The horizontal lines in equations (8, 9) represent the ther-
mal mean value. The density matrix,

∑
ν〈ν|ρ|ν〉ph con-

taining the effect of temperature of T 6= 0 K is given in
the following form:

〈ν|ρ|ν〉ph = (ρνν)ph

= {〈ν|exp

[
−
Hph

KBT

]
|ν〉/

∑
ν

〈ν|exp

[
−
Hph

KBT

]
|ν〉

(9a)

where the diagonal matrix elements of the Hamiltonian
are

〈Φν |H|Φν〉 = 〈Φν |(Hex +Hint)|Φν〉+ 〈αν |Hph|αν〉. (9b)

Inserting equations (5–7) into equation (8), and making
use of the following relationship

〈αν |(a
+
q + a+

−q)|αν〉 = αiq(t) + α∗i−q(t);

〈αν |a
+
q aq|αν〉 = (ν′q + |αiq |

2);

∑
ν

exp
[
−~ωqν′q/KBT

]
〈ν| exp(α∗iqaq exp(−αiqa

+
q )|ν〉

= (νq + 1)e−|αiq|
2(νq+1);

νq =

[
exp

(
~ωq
KBT

)
− 1

]−1

;
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exp[−W i,i±1] = 〈αiq |α(i±1)q〉

= exp

{∑
q

[α∗(i±1)qαiq −
1

2
(|α(i±1)q|

2 + |αiq|
2)]

}

×
∏
q


ν′q∑
m=0

(−1)m|αiq − α(i±1)q|
2mν′q!

(m!)2(ν′q −m)!

 , (10)

we get, after some tedious calculations, the equations of
motion in the following form:

j~ϕ̇i = ε0ϕi − JB(q, T )(ϕi+1 + ϕi−1)

+
∑
q

2g(q)(αiq + α∗iq)ϕie
jir0q

+
∑
q

g1(q)[(αiq + α∗iq)(ϕi+1 + ϕi−1)ejir0q] (11)

j~α̇iq = ~ωqαiq +
∑
i

2g(q)|ϕi|
2e−jir0q

+
∑
q

g1(q)(ϕ∗iϕi+1 + ϕ∗iϕi−1)e−jir0q

− λ1

∑
k

F (k − q)(αik + α∗i−k)(α∗ik−q + αiq−k) (12)

j~α̇∗i−q = −~ωqα∗i−q −

(∑
i

2g(q)|ϕi|
2e−jir0q

+
∑
i

g1(q)(ϕ∗i ϕi+1 + ϕ∗iϕi−1)e−jir0q

−λ1

∑
k

F (k − q)(αik + α∗i−k)(α∗ik−q + αiq−k)

)
(13)

where

B(q, T ) ≈ exp[−W i]

≈
∏
q

exp

{
−2coth

(
~ωq

2KBT

)
|αiq|

2 sin

(
1

2
r0q

)}
,

J =
~ω2

1

4ω0
, ε0 = ~ω0. (14)

From equations (12, 13), we obtain

j(α̇iq + α̇∗i−q) = −ωq(α
∗
i−q − αiq) or

(α̈iq + α̈∗i−q) = jωq(α̇
∗
i−q − α̇iq)

and

j~(α̇∗i−q − α̇iq) = −~ωq(α∗i−q + αiq)

−
∑
i

[4g(g)|ϕi|
2 + 2g1(q)(ϕ∗i ϕi+1 + ϕ∗iϕi−1)]e−jir0q

+ 2λ1

∑
k

(F (k − q)(αik + α∗i−k)(α∗ik−q + αiq−k)).

Thus we obtain from the above equations

(α̈∗i−q + α̈iq) = −ω2
q(α
∗
iq + αiq)−

∑
i

4g(q)ωq
~

|ϕi|
2e−jir0q

−
∑
i

2g1(q)ωq
~

(ϕ∗iϕi+1 + ϕ∗iϕi−1)e−jir0q

+
2λ1ωq

~
∑
k

F (k − q)(αiq + α∗i−k)(α∗ik−q + αiq−k). (15)

Taking into account the relationship between the ui(t) =
〈αγ |Ri(t)|αγ〉 and its Fourier variable uq(t):

ui(t) = N−1/2
∑
q

uiq(t)e
jqx (x = ir0) (16)

where uiq(t) =
(

~
2Mωq

)−1/2

(αiq + α∗i−q) we have on in-

serting the above equation into equation (15) the result

üiq + ω2
quiq =

j~χ1

2Mωq
sin(r0q)|ϕi|

2e−jir0q

+
~χ2

2Mω0N1/2

∑
i

(ejr0q − 1)(ϕ∗iϕi+1 + ϕ∗i−1ϕi)e
−jir0q

−
j8λ1

3M
sin

(
1

2
r0q

)
×
∑
k

sin

(
1

2
r0k

)
sin

[
1

2
r0(q − k)

]
uikuiq−ke−j(k−q)r0 .

(17)

In the long wave-length limit for low frequency vibrations

sin r0q ∼ r0q,

sin
1

2
r0k ∼

1

2
r0k,

sin
1

2
(q − k)r0 ∼

1

2
r0(q − k),

(ejr0q − 1) ∼ jr0q

and taking into account the dispersion relation in second
order approximation:

ωq = 2(λ/M)1/2 sin

(
1

2
r0q

)
≈ 2(λ/M)1/2

[
1

2
r0q −

1

3!

(
1

2
r0q

)3
]

= V0q

(
1−

1

24
q2r2

0

)
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where V0 = (λ/M)1/2r0 is the speed of sound. Thus equa-
tion (17) becomes

üiq + V 2
0 q

2uiq −
1

12
V 2

0 r
2
0q

4uiq =

j~χ1

2Mω0N1/2
(r0q)

∑
i

|ϕi|
2e−jir0q

+
~χ2

2Mω0N1/2

∑
i

(r0q)(ϕ
∗
i ϕi+1 + ϕ∗iϕi−1)e−jir0q

−
jλ1r

3
0q

3M

∑
k

(q − k)kuikuiq−k. (18)

Multiplying equation (18) with N−
1
2 ejr0iq and summing

over the wave number, q, at the same time, and making
the continuum approximation:

ϕi±1 = ϕi ± r0
∂

∂x
ϕi +

1

2!
r2
0

∂2

∂x2
ϕi + . . . ,

ϕi(t)→ ϕ(x, t)

ui±1 = ui ± r0
∂

∂x
ui +

1

2!
r2
0

∂2

∂x2
ui + · · · ,

ui(t)→ u(x, t)

and again utilizing equation (16) and

∂

∂x
u(x, t) = N1/2

∑
q

(jq)uiq(t)e
jqx

and

∂2

∂x2
u(x, t) = N1/2

∑
q

(jq)2uiq(t)e
jqx, etc.

We finally obtain

∂2u

∂t2
− V 2

0

∂2u

∂x2
−
v2

0r
2
0

12

∂4u

∂x4
=

~r0(χ1 + χ2)

2Mω0

∂

∂x
|ϕ|2 +

λ1r
3
0

3M

∂

∂x
|
∂

∂x
u|2 (19)

j~
∂

∂t
ϕ(x, t) = (ε0 − 2JB(q, T ))ϕ(x, t)

− Jr2
0B(q, T )

∂2

∂x2
ϕ(x, t)

+
~(χ1 + χ2)r0

ω0

∂u(x, t)

∂x
ϕ(x, t). (20)

Equations (19, 20) are a complete set of equations of mo-
tion for the vibron and the phonon generated in the or-
ganic molecular crystal at temperatures T 6= 0 K in the
continuum approximation. Because the B(T, q) relates to
temperatures T 6= 0 K, the properties of the soliton which
are determined by equations (19, 20) depend critically on
the temperature. However, finding its soliton solutions is
very difficult. We can find the analytic solutions by using
approximation and iteration.

2.1 The approximate method

Let us assume the solution of equation (19) to be of the
form

Q(x, t) = Q0(x, t) +Q1(x, t)

where Q(x, t) = −∂u
∂x

, and Q0(x, t) = −∂u0

∂x
satisfies the

following equation:

Q̈0(x, t) − V 2

(
∂2Q0(x, t)

∂x2
+
r2
0

12

∂4Q0(x, t)

∂x4

)
=

λ1r
3
0

3M

∂2

∂x2
|Q0(x, t)|2.

Setting ξ = x− V t, we obtain from the previous equation

(V 2 − V 2
0 )
∂2Q0

∂ζ2
−
r2
0V

2
0

12

∂4Q0

∂ζ4
=
λ1r

2
0

3M

∂2

∂ζ2
Q2

0 ·

After making two integrations and having in mind bound-
ary conditions

ϕ(±∞) = ϕx(±∞) = u(±∞) = Q(±∞) = 0 (21)

we get

1

12
r2
0V

2
0

∂2Q0

∂ζ2
− (V 2 − V 2

0 )Q0 +
λ1r

3
0

3M
Q2

0 = 0.

After again twice integrating the above equation, we ob-
tain the solution [12,15,16]:

Q0(ζ) = Q0(x, t)

=
3M(V 2 − V 2

0 )

4λ1r3
0

sech2

[
1

r0

(
V 2

2V 2
0

−
1

2

)−1/2

(x− V t)

]
,

(V > V0). (22)

Now substituting equation (22) into equation (20), we ob-
tain

j~
∂ϕ

∂t
= E0ϕ−

~2

2m∗(T )

∂2ϕ

∂x2
−W0sech2(νζ)ϕ(ζ) (23)

where

E0 = [ε0 − 2JB(q, T )],

~2

2m∗(T )
= Jr2

0B(q, T );

ν =
1

r0

(
V 2

2V 2
0

−
1

2

)−1/2

,

W0 =
3~M(V 2 − V 2

0 )(χ1 + χ2)

4λ1ω0r
2
0

,

m∗(T ) = mB(q, T ),

S = V/V0.
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Now we assume that the solution of equation (23) is of the
form [19,23]

ϕ(x, t) = φ(ζ)exp[j(kx− ωsolt)] (24)

where the solitonic wave-vector k = m∗V/~ and the soli-
tonic energy Esol = ~ωsol. Inserting equation (24) into
equation (23), the equation satisfied by the real part of
the amplitude, φ(ζ), is

d2φ(ζ)

dζ2
−

2m∗(T )

~2
(E −W0sech2(νζ))φ(ζ) = 0 (25)

where E = −~ωsol+E0+ 1
2m
∗V 2. When ~2ν2/m∗ = W0 =

2E, the solution of equation (25) is [21–23]

φ(ζ) = [W0m
∗(T )/2~2]1/2sech(νζ).

Thus

ϕ(x, t) =

(
W0m

∗(T )

2~2

)1/2

sech[ν(x− V t)]ej(kx−ωsolt)

= A(T )sech[ν(x− V t)]ej(kx−ωsolt). (26)

In the general case, the solution of equation (25) is

Pµ
′

g′ (tanh(νζ)) where Pµ
′

g′ is the associated Legendre func-

tion. In the special case where µ′ = g′, the solution reduces
to

ϕ(x, t) = A′(T )sechg′ [ν(x− V t)]ej(k−ωsolt) (27)

where A′(T ) is a constant of normalization which depends
indirectly on the temperature as

A′(T ) = νΓ

[
g′(T ) +

1

2

]/
√
πΓ [g′(T )]

where Γ (x) is the gamma function, the parameter g′(T )
is an integer which depends on the temperature T and it
satisfies the condition:

g′(T ) = g′ ≤
1

2

{[
1 +

12r2
0λ(χ1 + χ2)

~λ1ω0
m∗(T )

]
− 1

}
and µ′ =

(
2m∗(T )E

~2ν2

)1/2

.

Equations (26, 27) are just a supersonic soliton with
s > 1 (V > V0). Its speed and amplitude depend on the
anharmonicity λ and temperature T through m∗(T ) and
A(T ). To find an explicit expression for ϕ(x, t), we must
determine the representation of B(T, q).

From equation (4), we can obtain

aiq =
1

jr0q

(
Mωq

2~

)1/2

(Qiq − Q̇iq/jωq). (28)

We use here the method of the modulated waves, i.e.,

aiq = aiq(t)e
−jxq,

Qiq = Qiq(t)e
−jxq,

Qi(t) = N−1/2
∑
q

Qiq(t)e
−jxq, (x = ir0).

Utilizing equation (16) and Q(x, t) = −∂u(x,t)
∂x

, we may
get

Qiq(t) = Qi(q, t) = N−1/2

∫ ∞
−∞

dx

r0
Q(x, t)e−jqx.

Inserting equation (23) into the above equation, and again
integrating, we obtain

Qiq = Qi(q, t)

= N−1/2 3M(V 2 − V 2
0 )

4λ1r
2
0

∫ ∞
−∞

sech2(ν(x− V t))e−jqxdx

=
N−1/23πMV 2

0 q

2λ1r0
sech

(πqr0
2ν

)
e−jqV t.

Thus we can get

|aiq|
2 = (9π2M3V 3

0 q(V
2 + V 2

0 )/8Nλ2
1r0~)sech2(πq/2ν).

Substituting the above equation into equation (14), after
some calculation as above, we finally obtain

B(q, T ) =
∏
q

exp

{
−

9π2M3V 3
0 q(V

2 + V 2
0 )

4~Nλ2
1r

4
0

×cth

(
~ωq

2KBT

)
sech2

(πqr0
2ν

)
sin2

(
1

2
r0q

)}
(29a)

or

B(q, T ) = exp

{
−

[
9M3V 3

0 (V 2
0 + V 2)KBTν

2

4~2r3
0Nλ

2
1

×
∞∑
l=0

22lB2l((~V0/2KBT )q)2l

(2`+ 1)(2l)!

]}
(29b)

where B2l is the Bernoulli number.

2.2 The iteration method

Now we assume that the solution of equation (16) is of the
form [21–23]

ϕ(x, t) = φ(x, t)e( jhV
2J′

(x−x0)−jEt/~), (J ′ = Jr2
0). (30)

Substituting equation (30) into equation (20), we get

− Jr2
0B(q, T )

∂2φ

∂x2
−
~(χ1 + χ2)r0

ω0
Qφ =[

E − (ε0 − 2JB(q, T )−
~2V 2B(q, T )

AJr2
0

]
φ

or

−
∂2φ

∂x2
− ρQφ = εφ (31)
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whereQ = −∂u
∂x

, letting ζ = x−V t, equation (19) becomes

(V 2
0 − V

2)
∂2Q

∂ζ2
+
V 2

0 r
2
0

12

∂4Q

∂ζ4
=

~r0(χ1 + χ2)

Mω0

∂2

∂ζ2
|φ|2 −

λ1r
3
0

3M

∂2Q2

∂ζ2
·

Using the double integration for the above equation and
utilizing equation (21), we obtain

ν
d2Q

dζ2
+ (1− s2)Q+ α|Q|2 = σ|φ|2. (32)

The φ(x, t) satisfies a normalized condition:∫
|φ|2dζ = 1 (33)

where

ρ =
~(χ1 + χ2)

Jω0r0B(q, T )
, ν =

r0

12
,

ε =
1

Jr2
0B(q, T )

[
E − (ε0 − 2JB(q, T ))

−
~2V 2B(q, T )

4Jr2
0

]
,

σ =
~r0(χ1 + χ2)

2Mω0V 2
,

α =
λ1r

3
0

3MV 2
0

, s = V/V0.

Now multiplying equation (31) by ∂φ
∂x

and equation (32)

by ∂φ
∂x , and after, again integrating the two equations using

the equation (21), we get

ν

(
dQ

dζ

)2

+ (1− s2)Q2 +
2

3
αQ3

− 2σφ2Q+ 4σ

∫ φ

0

Q(Y )Y dY = 0 (34)

(
dφ

dζ

)2

+ 2ρ

∫ φ

0

Q(Y )Y dY + εφ2 = 0. (35)

Obviously, for bell-shaped soliton solutions centered at

ζ = 0 there certainly is
(

dφ
dζ

)
|ζ=0 = 0 [12–21]. Thus we

may immediately get from equation (35) the value of the
eigenenergy parameter

ε = −2ρφ−2
0

∫ φ0

0

Q(Y )Y dY

= −2ρ

∫ 1

0

Q(y)ydy, (y = Y/φ0) (36)

which corresponds to the value of the bound state of the
vibron. Inserting this value into equation (35), we may
obtain

ζ = ±(2ρ)−1/2

∫ φ0

φ

{(τ2 − φ2
0)

∫ 1

τ/φ0

Q(y)ydy}−1/2dτ.

(37)

Again using equation (37), we obtain from equation (34)

Q(φ) =∫ φ

0

{
(s2 − 1)Q− 2

3αQ
3 + 2σφ2Q− 4α

∫ τ
0
Q(z)zdz

2ρν(φ2 − φ2
0)
∫ 1

τ/φ0
Q(z)zdz

}1/2

dτ.

(38)

The unknown amplitude φ is determined by the condi-
tion of equation (33) which can also be represented as the
following form through inserting equation (37) into equa-
tion (33)

(2ρ)−1/2

∫ φ

0

y2

{
(y2 − φ2

0)

∫ φ/φ0

φ/φ0

Q(z)zdz

}1/2

dy =
1

2
·

(39)

Thereupon, we can easily get from equation (37) the en-
velope function φ(ζ) = φ(−ζ) in the implicit form by hav-
ing found a solution φ0 and Q(φ0) of equations (34, 35).
Therefore equations (37–39) are just a set of formulae for
finding the solutions of equations (34, 35). Now we are
going to solve the integral equations (37–39) by using it-
eration.

To solve the integral equation (38) by iteration we first
choose the function

Q(0) = Dφ2 (40)

where D is some positive numbers to be determined be-
low. Inserting equation (40) into equation (39) we get the
corresponding value of the amplitude to be in the form of

φ(0) =
1

2
(Dρ/2)1/2. (41)

Inserting again equations (40, 41) into the right-hand side
of equation (38) we can get

Q(1)(φ) =(
2

νρ

)1/2 ∫ φ

0

(
σ +D(s2 − 1)− 2

3D
2αx2(

1
8Dρ− x

2
) )

xdx. (42)

Obviously, the value of Q(1)(φ) depends on practical form
of D. We now choose D to be a positive root of the fol-
lowing equation

αρD3 + 12(1− s2)D − 12σ = 0. (43)

Utilizing the constraint condition of D, equation (43), we
get from the integral equation (42)

Q(1)(φ) = Dlφ2 = lQ(0)(φ) (44)
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where l =
(
a
νρ −

σ
νρD

−2
)1/2

. Inserting equation (44) into

equation (37), yields

φ(1) = (Dlρ/8)1/2 = l1/2φ(0). (45)

Similarly, inserting the first approximation given by equa-
tions (44, 45) into the right-hand side of equation (38) and
utilizing then equation (39) we can find the second ap-
proximation. The higher approximations can be obtained
in the same way. It is easy to see that for l = 1 the
initial function equation (40) with D satisfying equation
(39) is a fixed point of the integral equation (38). So if
l = 1, the expressions (44, 45) with D, a positive root
of the equation (43), describe the exact soliton solution
with the bell-shaped profiles φ(ζ) and Q(ζ), Near l = 1,
equations (44, 45) also represent the approximate soliton
solution.

It should be noted that the first approximation of the
soliton solution given by equations (44, 45) can be written
in an explicit form. Indeed, inserting equations (44, 45)
into equations (36, 39), we obtain

ε = −(D`ρ/4)2 = −(Dρ/4)1/2 = −C(T ) (46)

φ(1)(ζ) = (Dρ/8)1/2sech(Dρζ/4)

= (C(T )/2)1/2sech (C(T )(x− V t))

= φ(ζ) = φ(x, t) (47)

and

Q(1)(ζ) =
1

2
C2(T )sech2(C(T )(x− V t))

= Q(ζ) = Q(x, t). (48)

From equation (43) we find the positive root of equa-
tion (43) to be

D =

(
6σ

αρ

)1/3
[1 +

(
1−

16(s2 − 1)ν

3α2σ2

)1/2
]1/3

+

[
1−

(
16(s2 − 1)ν

3α2σ2

)1/2
]1/3

 > 0

therefore, when 3α2σ2 ≥ 16(s2 − 1)ν > 0, there is a su-
personic soliton with s > 1 (V > V0) in equation (47). In
such a case, the non-linear vibration of molecular chains
exists certainly in the molecular crystal where the above
mentioned supersonic solitonic solutions exist at T 6= 0 K
(i.e., α > 0), simultaneously. Thus, we can conclude from
equations (47, 27, 28) that the anharmonicity is a neces-
sary condition for forming the supersonic soliton; in other
words, if only the supersonic soliton excitation can oc-
cur in such a system, then the anharmonic vibration of
molecular chains certainly exists. The amplitude of the
soliton formed in the molecular crystal in such a case
increases as the temperature increases in a complicated
fashion and decreases as the anharmonicity coefficient in-
creases in the form of α−1/n (n ≥ 6). However, if we

let J and (χ1 + χ2) to tend to zero in such a way that
(χ1 + χ2)2J−1 → 0, while the constraint α = 3νρ (i.e.,
l = 1) remains valid, in this limit we find from equa-

tion (43) that D = 2
ρ

(
s2−1
ν

)1/2

> 0, (s > 1). Thus the

supersonic soliton is of the form

φ(ζ) =
1

2

(
s2 − 1

ν

)1/4

sech

((
s2 − 1

4ν

)1/2

ζ

)

=
1

2

(
s2 − 1

ν

)1/4

sech

((
s2 − 1

4ν

)1/2

(x− V t)

)
(49a)

Q(ζ) =
3(s2 − 1)

2α
sech2

((
s2 − 1

4ν

)1/2

ζ

)

=
3(s2 − 1)

2α
sech2

((
s2 − 1

4ν

)1/2

(x− V t)

)
(49b)

where C = 1
2

(
s2−1
ν

)1/2

. The formation of these solitons

in such a case is due to the balancing of effects between
dispersion ν and anharmonicity α, but the amplitude of
the soliton depends only on the velocity V in the form of
s1/2.

When s = 1 there is a positive root. In such a case, we

have D =
(

12σ
αρ

)1/3

> 0. Thus equations (47, 48) become
φ(ζ) =

(
3

124

)1/6(
σρ2

α

)1/6

sech

((
3σρ

16α

)1/3

ζ

)

Q(ζ) =

(
9σ2ρ

32α2

)1/3

sech2

((
3σρ

16α

)1/3

ζ

) .

(50)

This is a sonic soliton. Obviously, its amplitude de-
creases as the anharmonicity increases in the form α−1/6

or λ−1/6. Also, from the results just obtained, i.e.,
equations (27, 28, 47, 44), we can see that the influence
of the anharmonicity on the amplitude of the soliton is
contrary to the temperature T 6= 0 K, namely, the anhar-
monicity makes its amplitude decrease, but the temper-
ature make its amplitude increase. So, we may suppose
that the soliton excited in the molecular crystal with tem-
perature T 6= 0 K is stable. B(q, T ) may be calculated by
analogy with the method mentioned above in this case,
and the result of B(q, T ) is also analogous to equation
(29) and is not here displayed.

3 Calculation for the gamma-radiative
Mössbauer transition probability

From the above results we see that the supersonic soliton
is evolved also from a self-trapped exciton through interac-
tion with an anharmonic vibration of molecular chains in
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the crystals at temperature T 6= 0 K. When the supersonic
soliton moves and propagates at the velocity V , which is
greater than the sound velocity V0, along the molecular
chains, the states and positions of atoms will be changed,
at the same time. Then the activation of nuclei will also
appear due to the interaction between the soliton and the
atoms. Thus, the active nuclei may emit gamma-photons
and the Mössbauer effect will occur as described in
the introduction. We now calculate the gamma-radiative
Mössbauer transition probability from the active nuclei
located in molecular chain node i.

According to quantum theory the interaction potential
caused by the emission mentioned above may be repre-
sented as [24–27]

V = AΠ(xL, PL, σL)Γ (P, ui0) (51)

where Π(xL, pL, σL) is an operator related to the inner
state, coordinate xL, momentum pL and spin σL, of the
active nucleus. Γ (P, ui0) is an operator related to the emit-
ting state of the active nucleus located at the node i0 while
P is momentum corresponding to the emitted gamma-
quantum. Obviously, there exists the relationship:

ui0 = i0r0 +Ri0 (52)

in the emitted process, where Ri0 denotes the recoil dis-
placement of the emitting nucleus from its node. In the
general case, the Γ (P, ui0) may be represented by a pe-
riodic potential or a plan wave [24–27], i.e., Γ (P, ui0) =
dexp(jP, ui0/h). Thus equation (51) becomes

Vint = AΠ(xL, PL, σL)exp(jP · i0r0/~)exp(jP ·Ri0/~)
(53)

where d and A′ are proportionality coefficients which re-
late the characteristics of the molecular chain and nucleus.
In particular, let A = dA′. Equation (53) shows that when
the emission of gamma-quantum with momentum P oc-
curs the state of the molecular chain will also be changed.
According to the quantum theory of radiation [17], the
transitive matrix element for the change of state may be
represented as

Tn→m = 〈mΦmν |Vint|nΦ
n
ν 〉

= A〈Φmν |exp(jP ·Ri0)exp(ji0r0 ·P/~)|Φmν 〉
× 〈m|Π(xL, PL, σL)|n〉. (54)

Keeping in mind that the Π(xL, PL, σL) depends only
on the fixed numbers of internal degrees of freedom of
nucleus, it is not necessary to know its explicit form,
when we discuss only the emission phenomenon of the
organic molecular crystal. Thus the matrix element,
〈m|Π(xL, PL, σL)|n〉, in equation (54) may be treated as
having a constant value, when the change of the inner
state of the nucleus is small, and we let it be absorbed
into the constant A. Due to the reasons mentioned above
we are interested only in relative transition probability
determined by the following matrix element

Tn→m = A〈Φν |exp(jP ·Ri0/~)|Φν〉exp(jP · i0r0/~) (55)

i.e., by the transition amplitude in our case when the same
soliton is found in the molecular crystal before and after
the emission. In other words, the state of the supersonic
soliton is not affected by the emission as mentioned in
the introduction. Remembering that the |Φ〉 represents the
soliton amplitude, the Ri0 is given by

Ri0 =
∑
q

(~/2NMωq)
1/2eq(aq + a+

−q)exp(ji0r0q) (55a)

here the eq is the polarization vector of longitudinal
phonon.

Inserting equation (7) into equation (55) we obtain

Tn→m = A
∑
i

(1 + |ϕi|
2)Tνν(i)eji0r0P/~

where

Tνν(i) = 〈aν |exp

{
j

~
∑
q

(
~

2MNωq

)1/2

×(P · eq)(aq + a+
−q)e

ji0r0q
}
|aν〉.

Inserting equation (7c) into the above formula and per-
forming the corresponding calculation,we get

Tνν(i) =
∏
q

exp
{
β∗qα

∗
iq − βqαiq + |βq|

2/2
}

×
∞∑
iq=0

(−1)iq |βq|2iq (iq + νq)!

(iq!)2νq!
(56)

where

βq =
j

~
(~/2MNωq)

1/2(P · eq)e
ji0r0q and β−q = −β∗q .

Due to the fact that the molecular crystal we here study
is in contact with a thermal reservoir at temperature
T 6= 0 K, we should take the thermal average over the
phonon states for the matrix element equation (55) by
using the density matrix equation (9a), i.e.,

〈Tn→m〉 = A
∑
i

(1 + |ϕi|2)Tνν(i)eji0r0p/h

= A
∑
i

(1 + |ϕi|
2)〈Tνν(i)〉pheji0r0p/h (57)

where

〈Tνν(i)〉ph =
∑
ν

ρννTνν(i)

= 〈Tsol〉phexp

{
−
∑
q

(P · eq)2

2MNωq

(
νq +

1

2

)}
(58)

and aiq and a∗iq in equation (56) should be obtained from
equations (13–22), or equations (22, 28). Obviously, it is
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related to the supersonic solitonic solution ϕ(t). There-
fore, 〈Tsol〉ph contains the matrix element for the solitonic
part, Inserting the aiq, a

∗
iq and ϕi(t) obtained from pre-

vious equations into equation (58) and making the cal-
culation, then the solitonic part of the matrix element,
〈Tsol〉ph, is expressed as

〈Tsol〉ph = exp

{
−

1

N~
∑
q

3MNV 2
0

2λ1r2
0

(p · eq)

×
1

sh(πqr0/2ν)
exp[−j(i0 − i)r0q − jqV t]

}
.

Due to the fact that in the case of longitudinal phonons
the polarization vector is an even function of wavevector
(eq = e−q) and that the sum of

(P · eq) cos(((i0 − i)r0 + V t)q)/sh(πqr0/2ν)

over the wave-vector q should be zero because it is an odd
function of q, then we find

〈Tsol〉ph = exp

{
−

j

N~
∑
q

3MNV 2
0

2λ1r
2
0

(p · eq)

×
1

sh(πqr0/2ν)
sin((i− i0)r0q + V qt)

}
(59)

where we have adopted the Weyl formula in above calcu-
lation, i.e.,

eÂeB̂ = e−
1
2 [Â,B̂]eÂ+B̂

if [Â, [Â, B̂]] = [B̂, [B̂, Â]] = 0.

The origin of coordinates is now chosen in the active nu-
cleus (i0 = 0) and the sum over q replaced by the integra-
tion

1

N

∑
q

→
r0

2π

∫ π/r0

−π/r0

dq.

In the next step we consider the fact that for longitudinal
phonons the product (P · eq) has the constant value, we
can obtain after performing these calculations

〈Tsol〉ph = exp

{
−

3jMV 2
0 ν(P · eq)

2λ1r0π~
th(ν(ir0 + V t))

}
·

(60)

Substituting equation (60) into equations (57, 58), we get

〈Tn→m〉 = A
∑
i

(1 + |ϕi|
2)

× exp

{
−

3jMV 2
0 ν(P · eq)

2λ1r0πh
th(ν(ir0 + V t))

}
× eji0r0p/~ exp

{
−
∑
q

(P · eq)

2MN~ωq

(
νq +

1

2

)}
. (61)

In order to find out the explicit expression, we should cal-
culate the sum in equation (61) over i. Thus we introduce

the notation: G =
3MV 2

0 ν(P·eq)
2λ1r0π~ , and we make the contin-

uum approximation:
∑
i →

1
r0

∫∞
−∞ dx, so that the second

term in the above expression becomes

F1 =
∑
i

|ϕi|
2 exp {−jGth(ν(ir0 + V t))}

=
1

r0

∫ ∞
−∞

A2(T )dx

ch2(ν(x− x0 − V t))

× exp {−jGth(ν(x+ V t))} .

Performing the corresponding transformation, we get ap-
proximately

F1 =
A2(T )

T0ν
exp {−jGth(ν(x0 + 2V t))}

× 2

∫ 1

0

dY (1− Y 2)0 cos(GY )

=
A2(T )

G
exp {−jGth(ν(x0 + 2V t))}J0(G) (62)

where J0(G) is the zero order spherical Bessel function.
Also, for the first term in equation (61) we obtain

F2 =
∑
i

exp {−jGth(ν(ir0 + V t))} .

Using the continuum approximation
∑
i →

1
r0

∫∞
−∞ dx, the

above expression becomes approximately

F2 =
1

r0

∫ ∞
−∞

exp(−jGth(νx)) exp(−jGth(νV t))dx

= exp(−jGth(νV t))

(
1

r0ν

)∫ 1

−1

(e−jGY /sech2Y )dY

=
2(G2ch21 + 1)

νG(G2 + 1)
exp {−jGth(νV t)} . (63)

Thus equation (61) can be written as

〈Tn→m〉 = (4A/G)
{
A2(T )J0(G)

× exp(−jGth(ν(V t+ x0))) +
(2(G2ch21 + 1)

νG(G2 + 1)

}
× exp(−jGth(νV t) + jr0i0P/~)

× exp

(
−
∑
q

(P · eq)

2MNωq~
(νq + 1/2)

)
. (64)

Finally, the Mössbauer transition probability is given as

τ = Wn→m = |〈Tn→m〉|
2

=
λ2

1r
2
0π

2~2A
2

9M2V 4
0 ν

2(p · eq)2
{[A2(T )J0(G) cos(Gth(ν(V t+ x0)))

+
2(G2ch21 + 1)

νG(G2 + 1)
]2 + J0(G)A4(T ) sin2(Gth(ν(V t+ x0)))

× exp

{
−
∑
q

(p · eq)2

MN~ωq
(νq +

1

2
)

}
. (65)
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We here are interested in the long-time behaviour of the
transition probability in the steady situation, which is

τ =
λ2

1r
2
0π

2~2A
2

9M2V 4
0 ν

2(p · eq)2

{(
A2(T )J0(G) cosG

+
2(G2ch21 + 1)

ν(G2 + 1)

)2

+A4(T )J 2
0 (G) sin2G

}
× exp

{
−
∑
q

(p · eq)2

MN~ωq

(
νq +

1

2

)}
· (66)

From equation (66) we can obtain the following properties
of the Mössbauer effect arising from this mechanism we
study here:

(1) the transition probability is a product of the su-
personic soliton part resulting from the anharmonic ef-
fect at a finite temperature T 6= 0 K and the phononic
part. If we admit that the molecular chain is populated
exclusively by the solitons, the Mössbauer effect, gener-
ally speaking, is less probable than in the case where pure
phonon modes are spread over the whole chain. The latter
leads to the probability in equation (66) having the factor

exp
{
−
∑
q

(P·eq)
2

2MN~ωq cth
(
~ωq

2KBT

)}
.

(2) The above transition probability depends on the
temperature T . As to the influence of the temperature on
the probability, it is manifested through the factors A(T ),
the amplitude of the soliton, and νq = [exp(~ωq/KBT )−
1]−1 in the case of pure phonon states. Knowledge of these
parameters allows one to estimate the value of transition
probability. In the general case, an accurate calculation
for the probability is very difficult, but an approximate
numerical estimation of equation (66) is possible by using
generally accepted values for the parameters. In the litera-
ture [1–14,21] there is agreement on the following values:

J = 3–4 cm−1, χ = ~χ1

2ω0
= (56−62) PN, χ′ = ~χ2/2ω0

= (6−8) PN, M = 2.25 ×10−25 kg, λ = (4.8−13) N/m,
λ1 = (4×10−5) N/m2, r0 = (2−5) Å, ε0 = (0.2−0.205) eV,
for acetanilide. Using the above values, in Figure 1 we

plot the relative transition probability τ/A
2

versus the
temperature T relation at V = 1.2V0 and the wavelength
of gamma-photon λ = 2.25 × 10−11 m. From this figure
we see that the transition probability increases slowly as
the temperature increases in a linear-like fashion. How-
ever, the main effect of the temperature on the probabil-
ity comes basically from the phononic part. Meanwhile,

we can get that the τ/A
2

is 11−11.5% at T = 300 K and
V/V0 = 1.2. Therefore, the transition probability is very
small at 300 K.

(3) The transition probability depends on the strength
of the anharmonical vibration, λ1. From equations (65, 66)
we can see that the probability is zero, when the an-
harmonicity is not present. This shows clearly that the
Mössbauer effect and corresponding transition probabil-
ity comes from the anharmonical vibrations of molecular
chains and the temperature in the systems. In Figure 2
we plot the τ2/A2 as a function of λ1/λ at T = 300 K.

Fig. 1. The relative transition probability τ/A
2

versus the
temperature T relation at V = 1.2V0 and λ = 2.25 × 10−11 m
in equation (66).

Fig. 2. The relative transition probability τ/A
2

versus the
λ1/λ relation at T = 300 K and λ = 2.25 × 10−11 m in equa-
tion (66).

From this figure we see that τ/A
2

increases with increas-
ing λ1/λ.

(4) The transition probability depends on the strength
of the coupling, (χ1+χ2) and µ (µ = νr0). In Figures 3 and

4 we plot the τ/A
2

versus the (χ1 + χ2) and µ relations,

respectively. From the two figures we see that the τ/A
2

increases with increasing the (χ1 +χ2) and decreasing the
µ at V/V0 =1.2, T =300 K and λ = 2.25×10−11 m, respec-
tively. From equation (66) we can also see that the transi-
tion probability is pure phononic, when the (χ1 +χ2) = 0.
This shows clearly that this Mössbauer effect and corre-
sponding transition probability result from the motions of
the solitons and the thermal phonons, and their interac-
tion in the organic molecular crystals. Also, the transition
probability decreases with growth of the soliton velocity,

V , since the parameter µ =
[

1
2 (V 2/V 2

0 − 1)
]1/2

is related
to V .
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Fig. 3. The relative transition probability τ/A
2

versus the
(χ1 + χ2) relation at V = 1.2V0, T = 300 K and λ = 2.25 ×
10−11 m in equation (66).

Fig. 4. The relative transition probability τ/A
2

versus the µ
at V = 1.2V0 and λ = 2.25 × 10−11 m and T = 300 K in
equation (66).

(5) The transition probability is related to the wave-

length of the γ-photon emitted. In Figure 5 we plot τ/A
2

versus λ relation. From this figure we see the τ/A
2

is
smaller when the wavelength λ is shorter.

(6) The size of the transition probabilities depends on
the inherent characteristics of organic molecular crystals
(M, r0, V0, N, ω0 and ω1), and the features of these quasi-
particles generated in collective excitation (ωq, q, V and
m), and the environment condition of molecular crystals,
i.e., the temperature. Therefore, the transition probability
for different molecular crystals is different.

If we suppose that the scalar product (P · e) is small
enough so that the estimation G� 1 is valid, then in such
a case the transition probability becomes

Wn→m(G→ 0) ∝ (1 + 3/8(s2 − 1)

× exp

(
−
∑
q

(
(p · eq)2

2MN~ωq

)
cth

(
~V0q

2KBT

))
·

Fig. 5. The relative transition probability τ/A
2

versus the
wavelength of ν-photon, λ relation at V = 1.2V0 and T =
300 K in equation (66).

On the other hand, for large values of G we obtain ap-
proximately

Wn→m(G→∞) ≈

A
2
(

λ1r
2
0~

MV 2
0 (p · eq)

)4

A2(T )(π/ν)(A2(T ) cos2G+ sin2 G)

× exp

(
−
∑
q

(
(p · eq)2

2MN~ωq

)
cth

(
~V0q

2KBT

))

where the probability rapidly decreases with the increase
of parameter G so that the solitonic Mössbauer effect is
basically negligible in such a case.

The results obtained above develop the subject of the
soliton model of the intramolecular energy transport in
molecular crystals, and facilitate further the experimen-
tal confirmation of the soliton existence in the molecu-
lar crystals by using the Mössbauer effect method. This
study could also advance development of soliton physics
and Mössbauer technology.
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